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INTRODUCTION

Consider C(X), the space of continuous, real-valued functions on a compact
Hausdorft space X, with the uniform norm. It is assumed that C(X) contains
a finite dimensional subspace G with the Chebyshev property (i.e., no element
of G other than g -= 0 has » (distinct) zeros on X, where » is the dimension of
G). Let f be a member of C(X) which is not contained in G. Then we are
guaranteed the existence of a unique element g* of G such that

gl =S gl
forevery g G.

It is easy to show thatif ||/ — gll ~ |/ —g* |, then g ~ g* (in the sense
that a sequence { g;} satisfying |, f — g, I -» | f - g*|i,asj - oo, also satisfies
g > 8"

The question arises, however, what is the nature of this convergence ? A
result of Newman and Shapiro [p. 680] is that there exists a constant K such
that

lg—g* = Klf—g — /- g D (1

An immediate consequence (first proved independently by Freud [p. 162])
is that for /; . another member of C(X) ~ G, and g, *, the best approximation
to f; from G, the following inequality holds:

lg* —g* < K, /Al (2)

The constant K, depends upon /, and, as Cheney [p. 82] has shown, K, can be
taken as 2K (K as in (1)).
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Foundation.
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This paper explores various notions relating to inequalities (1) and (2).
In Sec. 1, it will be shown how (1) can be used to reduce the domain of
approximation problems and also that an appropriate K can be determined
without requiring knowledge of g* (but only of il /'— g* 1), In Sec. 2, it will
be shown that if X is a finite set, the constant in (2) can be made independent
of £, but such is not the case if X 1s infinite. In Sec. 3, it will be shown that a
suitable K can be found as the result of solving #n - | interpolation problems.
This is used in Sec. 4 to determine K in a specific case. In the concluding
Sec. 5. we take C(X) to be the space of continuous, complex valued functions
on X, in which case. in general. (1) does not holid.

1. AN APPLICATION OF K AND AN ALTERNATIVE DETERMINATION

It is clear that if some K satisfies (1), then every larger value of K also will.
We may seek the minimal such K and label it K, . Then it is clear that K,
satisfies

Ky = sup ——— 2
ot L= gl — - g

Letting the extremal set of the residual /° - ¢* be labeled £ (i.c..
Edxe X f(x) — gy i f —gr

then g* is also the unique best uniform approximation from G to ' on D, for
any compact subset D of X such that £C D. The ability to reduce considera-
tion to a subset of X may substantially reduce the scope of the problem. The
following theorem shows that such sets D can be constructed when estimates
of K,and | f— g* | are given.

Tueorem 1. Given K = Ky. 7 = (f— g™ ,and any g < G, let
m=—7T—K(f—g —71).

Then g*, the best uniform approximation to f on X, is also the best uniform

approximation to fon D = {xe X : ' f(x) — g(x) - m}.
Proof. It suffices to show £C D. For xs £, f(x) -~g*(x)y - [/ - g%
and

LAY gl L) — g M (0] — L gRx) — glx),
=S —g*l —ilgt gl
M —g* K g~ g%
cr — K(|f— gl —7) = m,
Thus x e D.
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It is clear that the ability of such sets D to reduce the scope of the problem
is related to how good the estimates K and v are of K, and ||/~ ¢~ .

respectively, and also how close g is to g*. For g == g% and 7 =: | eF i
the quantity m = f — g*! ., hence the set D is exactly E. However. if
K(|f— gl — 1) = 7, then m = 0, and D is X, hence no improvement is

made.

The underestimate 7, for i/ — g* [ can be obtained from L, approximation
theory. Given a measure g on X such that G and f are contained in L,(X. )
then if g is a best approximation to ffrom G with respect to the norm induced
by ., 1t follows that

’X f— &P dp JX st dp < S g X,
Hence
o (J"\, S —gF d/}_{)]'z

U )
provides a suitable underestimate for |, f — g*|.

The following characterization shows that K, can be determined with
knowledge only of |/ — g* .

THEOREM 2. Let G* ={gec G I f — gl > {f— g* . Then

Hge — &

W — el el -2 g

S
K,

Proof. It is clear that G* = G ~{ ¢*} and from the definition

K == Sup T — 757 T
! e Gafyty / — & H/ - g*
| gl g*
su o e e e e
sty S g 20 e
sup — g & B
muage Gty 1 = g A B — gt — 20 f — g* |

However, for g, . g, G ~{g*}
O Alf—g !l H0f gl -2 f—g*!
SOl = =g 4 f =gl — 1 g*D)

I L "
'*I?‘(“z‘h —g¥h b g — gD

4]

b "
EErr R 4 N ‘I

Ky
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Thus, for every pair g, . g, € G ~ { g™}

. g &
Ky = —= 22 — —
O D e gl - 20— gF I

The preceding yields underestimates of K, but Theorem 1 and general use
require an overestimate. However, if a sequence of approximants { g*} is
output by some algorithm, the ratio in Theorem 2 could be calculated using
g* and g"*1 and any overestimate for | /' — g* || (e.g., . f — g ' 1). From the
nature of this sequence one might guess K, and perhaps apply some factor
(depending upon one’s cautiousness) to “insure” a K - K, .

2. LipscHITZ CONDITION ON THE APPROXIMATION OPERATOR

Inequality (2) bounds the difference of two best approximations by a
constant times the difference of the two respective functions being approxi-
mated. Unfortunately, the constant depends upon one of the functions. It is
the purpose of this section to show that in the case of finite sets X, this con-
stant can be made independent of the function and hence the best approxima-
tion operator is Lipschitz continuous. It will also be shown that such is not
the case when X is not finite.

For this purpose we require several results found in Cheney [pp. §0-82]
and summarized in the following lemma.

Lemma 1. Let Gy = {geG:llgl =1} and

K = (min max (sgn{f(x) — ¢*()]) - g(x)~!

8EG .
Then K == 0,
lg—g"ll - K(G/—gi—1f—g"].
and
lg* — g™l 22Kl f— Al
(where fi and g,* are as in (2)).
THEOREM 3. Assume X is a finite point set, then there is a constant K*

(depending only upon X and G) such that for any f, , f, € C(X), the best approxi-
mations gu* and g,* to fy and f, , respectively, satisfy

lg* —g*Il =< K* i —/fall. (3)
Proof. 1f f,,f;, €@, the theorem holds with K* > 1; and if f; € G but
/> ¢ G with K* = 2, Henceforth it is assumed that f; , /o ¢ G and K* = 2.

640/8/2-5
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For fixed /| , from Lemma 1, (3) is satisfied with

2€Gy  x€E

K == 2(min max (sgnf/(x) ~ g, ] gy

This K is obviously a continuous function of f, and thus assumes 4 maxi-
mum on the compact unit ball of C(X) (recall the finiteness of X implies C(.X)
is finite dimensional). Label this maximum K*. then for any £, such that

il =1

ST KT
In general, it /; and f, are both the zero function, then so are g,* and g,*.
thus (3) holds independent of K*. Otherwise, we may assume - f,| + 0 and

hence £/ /, ' is of unit norm. The best approximation to this function is
g, %/ 111 and similarly the best approximation to £,/ i f; 1is g,*/i /1| . Thus

i 2" fioog7 @5
K ho o h RO
K" A f_»

We now move to the case where X is infinite. In the preceding case the
finite nature of X was used only to guarantee that the unit sphere of C(X)
was compact. We shall see that except possibly in the case where n = 1. X
having infinite points implies no inequality like (3) holds.

THEOREM 4. [f X is infinite and n 2. then there exists no constant K*
such that for every i and f, € C(X)

Pgy™ - & K= fi  fal.

Proof. 1t suffices to show that given any € -~ 0 there exist £, and £, such
that | f; -~ f5! e. but] g,* - ¢g,* = 1.

From the compact, Hausdorft, and infinite nature of X, it follows that X
has a condensation point x*. Select two independent elements ¢g' and g* of G
and let

g =gW") g - &xT) gy

thus g(x*) - 0. We may assume , ¢ | I. By continuity there is a neigh-
borhood N of x* on which | g! < e Since N is a neighborhood of a con-
densation point, we may select n ¢ | distinct points {x;}/7¢ in N. Further-
more, since X is compact and Hausdorfl, hence normal, there exists an open
subset N, of N such that N, C ¥ and the points {x;} C N, .

Let {r;}77} be a set of n -+ 1 real values such that r, == 1 and

it

Y riglx) 0

J-1
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for every g € G (that such is possible follows immediately from the Chebyshev
character of G). Furthermore, from Cheney [p. 41], it seen that if

Silx) =sgnr;, j=1l..,n+1,
then the best approximation to f; on {x;}77} is the zero function. To see this
let § be the best least squares approximation to f; and 7 - f; — g, then

Y xy) glyy) = 0 forall gedG,
J=0

and (since {#(x,)} and {r;} are both nonzero n -- I-vectors orthogonal to n
dimensional G) for some « = 0

r; = of(x;) for all j.
Hence
= Q) (X)) g(x)
= arsgn r; — §(x;))
=l = gy
= x| [HG)] — o)) g(x;).
Thus

n

o Zn; X)) = oo, - Z [R(x;) — of i 7(x;) 8(x;)

j=0 in =0

iz

= sgn x - a7 - Z (X)L

i=0

which implies
n

_ Zii!’,ﬂm =1

>, T

We have then

sgn( fi(x;) — 0) = sgnr; = sgn #(x;) - e.

Using the Tietze extension theorem, extend f; to X such that | f; ]| = | and
fi = 0onX~N,.Thus!|f; ] =10 — f1 = I, s00is also the best approxi-
mation to f; on X.

Now define f, = g on the boundary of N, (i.e,, on N; N X ~N,),
/s = 0on X ~ N, and extend f, to the compact set X ~ N, such that | f, | < €
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(recall {21~ e on N;, hence N;). On N, n X ~ N, the function f, = &

i + g, hence we may extend f, in a continuous fashion to all of X by letting
fo i L gon N,

Since {f, - &1 Ll lon Ny, f, - 8 2¢ -1 (assume ¢ iy
on N~N .and | f, - g} - | & lon X ~N:if, ¢ I. Further-
more

fx) - glxy) - filxy o osgnr . ] l... n I
Thus g is the best approximation to /, on {x,\. and since . f, =~ g1 I.gis
also the best approximation to f, on i

We have then that ¢g,* -- 0 and g~ g.thus 1g* g% 1. The
proof will be complete if it is shown that f, -/, - e But on
Nis fi — 1a iZi e, and on X ~N,. f, [, I e, thus

U fs - f111s bounded by €. ||

It should be noticed that the assumption that # - 2 was necessary (o
produce a g with a zero, but not identically zero. No such functions exist for
one-dimensional Chebyshev systems.

3. THE CONSTRUCTION OF A SUITABLE K

In this section we seek to exhibit a technique for determining a constant K
in inequality (1) and a K* in (3). The construction of an appropriate K will
involve the solution of # 4 | interpolation problems.

In Lemma | it was remarked that the quantity

K [min max (sgn[f(x)  g=(x)]) - g0} !

eeGy xel

would suffice in (1). In Cheney’s proof it is clear that the maximum could be
taken on any subset E, == {x;}/_, of E with the property that there exist
positive scalars {8,}% | such that

R
0= ) O sgn(flx)  g7(x;) - glxy)
j=1

for every g € G. Any n -+ 1 point subset of £ on which g* is the best approxi-
mation to f'is such a set E,. We assume a suitable £, has been selected and
let

K - [min max (sgn[f(x) - g¢*()]) - g(x)] " (4)

2eGy xeE,
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In Lemma 3 it will be shown that K may be determined by taking minima on
a far smaller set than G, . To this end, for g € G let

y(g) - max [sgn(/(x)  g*(¥)] - glx).
and
G * ={geG:p(g) = sgn( f(x)—g*(x)} - g(x)for at least n values x of E}.
First, it will be shown that there are n -i- | elements of G,*.

LEMMA 2. G * contains 1 — | members.

Proof. Let E, = {x;/"}'. From Cheney [pp. 36, 41], we know there exist
n 1 positive scalars {A;}7 ! such that

el
0= Y Adsgn[fix;) — ¢*(x)D - g(x) (5)
i1
for all g € G. Define g, € G such that for7 - 1....n 4 |
gdx)  osgnlf(x) —g¥x)], o leana o j ol

san[flx;) - 2] gdx) = 1A Y A0

Poosgnl /i) — g% ()] - gilx)
tor j 4 i. Thus g,/ == g,/ig,i € Gy*, and G,* has at least n - | elements.

which would imply G;* has exactly n 4+ | members. From Eq. (5),
sgn g(x;) = —sgn[ f(x,) — g*(x,)] for some / and hence for j < i

y(g) == sgn( f(x;) — g¥(x;)) - g(x,):

thus g is a positive scalar multiple of ¢/, but this multiple is | and ¢ - g/
since |gll 1 =ig/ . |

Lemma 3. The quantity K in (4) satisfies

K = [min y(2)] .

®EG,

Proof. 1t will be shown that if g € G, ~ G,*, then there is a ¢’ € G, such
that y(g') <(g). Let J = {xc E,: v(g) = sgn[ f(x) — g*(x)] - g(x)}. Let
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us assume Initially the existence of an x* ¢ J such that g(x=) .- {g |
(the case where g(x) - I for x ¢ J, ie.. {x: g(x) == 1 T /. will be con-

sidered later).
Since g ¢ G,*, J contains at most 7 | points and we mayv determine an
element /1 £ G such that

Mxy - -0, for xeJ
and
Mx*) == g(x*).
Thenlet g, - ¢ — M (A to be specified later). For xe J
sgn f(x) - g*(0)] gi(x) — sgnf(x) -~ gX¥)]gx) - y(g)
forxe E, ~J
sgn[f(x) ~ g (x)] gu(x) = sgn[f(x) - g*()] glx) . Asgn[/(x) g*(x)] hlx)
cosgn{f(x) - gf )] glx) A A v( g)
for A sufficiently small. Thus y( g;) - y( g). yet
o @y e gy s Aglx ) s L
for A positive. Letting g' - g,/ g, i, it is seen that ¢’ ¢ G, and
&) = g iylg) <yl g) - pg)

We have delayed consideration of the case where {x : i g(x). = 1} CJ. but
for such a case the quantity y{ g) must be unity. But 1 is also the upper bound
for y( g) for ge G, . hence unless min,.q y( g) -= MaX,e. y( &) there will
be a g' € G, such that y( g’} << y( g) If maximum and minimum are equal,
the nonemptiness of G,* suffices to show the lemma holds. |

Using Lemmas 2 and 3, the following is obvious.

THEOREM 5. Let E, be an n i 1-point subset of E on which g* is the best
( P ) 8

approximation to . Writing E,  {x " let, for i - 1.... i 1,g,¢G be
PP . g Ly iS =1 .

a function such that
gilx;) = sgnl f(x) — g (x)), o L e b e L
Then the constant in inequality (1) can be taken as

K = max| g, !
I
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Proof. In the proof of Lemma 2 it was shown that

')’( gi) =2
and that
g[/ B gh’“i 8 \E le'
Thus
y(g/') =1l g
and from Lemma 3
K == [min (g )] ' max|g .. 1

Now we turn to the determination of the Lipschitz constant K* in (3)
assuming X is a finite set. As was shown in the proof of Theorem 3, it will
suffice to consider each fin the unit ball of C(X) and compute the correspond-
ing K. then let K* be the maximum of all such K. As can be seen from
Theorem 5, K may be determined with the information of E, and sgn{f - g*]
on k.

For a given n + I-point subset E, of X, the values of sgn[f — g*] on E,
can be determined as in the proof of Theorem 4. That is. let £, = {x,}"7!. and

determine an n# -- l-vector {r;}*'} such that
13i=1

n1

0=Y riglx) and o= L

j-1

By considering a basis for G this involves solving an n « n algebraic system.
It follows (see Cheney [p. 41]) that the best approximation to an /'on E, will

have residuals with sign sgn[ f(x;) — g*(x;)] = —sgnr;j —= 1,0+ 1 or
sgn[ f(x;) — g*(x)] = —sgnr,j= l..,n+ 1. It then can be seen that K
may be determined by solving the n + | interpolation problems as in

7+l

Theorem 5, with right-hand sides taken from {sgn r;}} }". (The cases for right-
hand sides {—sgn r;}77}" is handled concurrently since the quantities | g, | are
independent of - g, .) Since each f'e C(X) has an E, . by considering all (,};)
such sets £, (m is the cardinality of X), computing the corresponding K’s.
and letting K* be their maximum, the Lipschitz constant of (3) can be deter-
mined.

4. A Speciric EXAMPLE

We use the theory of Sec. 3 to determine a Lipschitz constant K* where
for fixed n, X is the set of n 4- 1 Chebyshev points x; = cos jm/n, j == 0,..., n,
on the interval [ —1, 1] and G is the set of polynomials of degree < n — 1. It
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is easy to see that this same K* will satisfy inequality (1) for /' x*. Since X
contains exactly n -1 I points, it coincides with the one possibie set E,, . The
signs of the residual are clearly ( -1y - O...nor - ( 1y j - 0.0,
We need determine for i = O..... .. polynomials ¢, = G such that

gi('\'/) = ])’ f 0..... II.V/' i. ((7)

o, Yo costhk cos b

and using the transformation cos # -+ x. we may seek cosine polynomials /,
such that
no1

glcos 0) - h(B) Y . cos kb

The conditions (6) now become
i jminy - (1) i 0..... nej ool

Consider
w1

b, (1)t (1 2Y cosk ’: cos k¢,
[

using simple trigonometric identities, 1t can be shown that

sin 16 sin 6
Iy = cos nl . - T
cos f ~ cos in/n

from which it 1s clear that
hjminy - (1), Joon

and thus the solution to the interpolation problem is

’ n--1 .
17
g == (1) (l 2% cosk T costk cos ! .\')}.
1 1
From this representation it follows immediately that i g, 21 - I, and in

factfori - n

noed

gl—1) = (= 1Ty! (l 2 z (1) (— 1)/\)'
b=1
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Thus

“8n :‘ = 2n ~ 1.
We have succeeded in showing then that

K* == maxilg, | = 2n — |

5. THE CompLEX CASE

Along with inequality (1) for real approximation problems, Newman and
Shapiro present a complex version:

E e A N I A e e A R CUVEE S R VAl SR AN

Since this inequality is poorer than one of the form (1), it becomes of interest
to determine if it can be improved. To be precise, does estimate (i hold for
the complex approximation cuse ?

The following simple example shows that such is not the case. An f and a
sequence { g;} are exhibited such that for no finite K does

g — ¢ KIS =gl S—g*)D

hold for all J.

Let X = {11 U{=1},f(I)=1,f(—1) = —1I, and G be the one-
dimensional space of complex constants. Then g* = O and ' f — g* | = 1.
But for g; == i - (1/j)j = 1.2....

_ R
tg g* = 1 and [ f gl =" ; L
Thus
g S
‘ N = \/1 e jzw./v

[
g &t

which cannot be uniformly bounded from below by a positive constant.
Although estimate (1) may not hold in the complex case, it is possible to
use (7) to produce a continuity condition for the complex case simiiar to (2).

THEOREM 6. For the complex approximation problem (with notation as
before) there exist constants K7 and K, depending upon f; such that

leF s S KON - LA KA —
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Proof. From (7) we have

SF TR Kifi g™ i) KA gt Tgm )
But
fiog” ST
Lh =1y 2 &2 S
fir- /s s g &
Lo T Pl hi T hoar
=20 S

Thus the theorem follows with

K/ - vV2K,  and K/ 2K.. |
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